B.Sc (Physics, Mathematics & Computer Science)

First Semester

	Algebra and Trigon	ometry		L	Т	P
3. Course Code	MT121			3	1	0
4. Type of Course (use tick mark)	Core (✓)	DSE ()	AEC ()	SEC ()	OE ()
5. Pre-requisite (if any)	10+2 with PCM	6. Frequency (use tick	Even ()	Odd (✓)	Either Sem ()	Every Sem ()
7. Total Number of	Lectures, Tutorials					
Lectures = 30		Tutorials = 10		Practical =	Nil	
	ng the principal of applied r ally completion of course, the AES (CO):					
	urse completion, learners w	ill develop following	attributes:			
COURSE OUTCOM	E (CO) ATTRIBUTES					
CO1	Elementary operation	pret Symmetric, Sko ons, Rank of Matri onsistency of linear ed lications.	x, Linear i	independence	e of row and co	olumns matrice
CO2		ret Relation between f ation of equations, E ns.				
CO3		et Binary operations, es, subgroups, cyclic				p with example
C04	Describe Lagrange' subgroups, Introduc	's theorem and its c	onsequence	s. Homomor	phism and isome	orphism, Norma
CO4	subgroups, mubdub	lion to ring				
C04	Find and interpret (Complex functions a rigonometric and hyp				
	Find and interpret (direct and inverse t Summation of series	Complex functions a rigonometric and hyp				
CO5 10. Unit wise detailed	Find and interpret (direct and inverse t Summation of series	Complex functions a rigonometric and hyp	perbolic fur			
CO5 10. Unit wise detailed Unit-1 Matrix: Symmetric, independence of row	Find and interpret (direct and inverse t Summation of series content Number of lectures = 08 Skew-symmetric, Hermitia and columns matrices, con	Complex functions a rigonometric and hypes. Title of the unit of the unit of skew-Herministency and inconsistency and i	perbolic fur it: tian, Elemo	entary opera	ithmic function, of	Gregory's series Matrix, Linear
CO5 10. Unit wise detailed Unit-1 Matrix: Symmetric, independence of row values and eigen vector	Find and interpret of direct and inverse t Summation of series content Number of lectures = 08 Skew-symmetric, Hermitia and columns matrices, con rs, Cayley Hamilton theorem	Complex functions a rigonometric and hypes. Title of the union and skew-Herminisistency and inconsistency and inconsiste	perbolic fur it: tian, Elemo stency of li	entary opera	ithmic function, of	Gregory's series Matrix, Linear
CO5 10. Unit wise detailed Unit-1 Matrix: Symmetric, independence of row values and eigen vector Unit-2 Relation between roots	Find and interpret (direct and inverse t Summation of series content Number of lectures = 08 Skew-symmetric, Hermitia and columns matrices, con	Complex functions a rigonometric and hypes. Title of the units and skew-Hermit sistency and inconsist m and applications. Title of the unit polynomial equation	perbolic fur it: tian, Elemo stency of li t:	entary opera near equation	tions, Rank of ns, characterstic of	Gregory's series Matrix, Linear equations, eigen
CO5 10. Unit wise detailed Unit-1 Matrix: Symmetric, independence of row values and eigen vector Unit-2 Relation between roots of sign, solution of cubi	Find and interpret of direct and inverse t Summation of series content Number of lectures = 08 Skew-symmetric, Hermitia and columns matrices, con rs, Cayley Hamilton theorer Number of lectures =08 and coefficient of general p	Complex functions a rigonometric and hypes. Title of the units and skew-Hermit sistency and inconsist m and applications. Title of the unit polynomial equation	perbolic fur it: tian, Elemo stency of li t: in one varia	entary opera near equation	tions, Rank of ns, characterstic of	Gregory's series Matrix, Linear equations, eigen

Unit-4	Number of lectures = 08	Binary operations
Lagrange's theorem a	nd its consequences. Homomory	phism and isomorphism, Normal subgroups, Introduction to ring.

Unit-5

Number of lectures = 08 Title of the unit:

Complex functions and separation into real and imaginary parts, Exponential, direct and inverse trigonometric and hyperbolic functions, logarithmic function, Gregory's series, Summation of series.

COs	Attributes	PO1	PO2	PO3	PO4	PO5	PO6	PO7
C01	Describe and interpret Symmetric, Skew-symmetric, Hermitian and skew- Hermitian matrices, Elementary operations, Rank of Matrix, Linear independence of row and columns matrices, consistency and inconsistency of linear equations, eigen values and eigen vectors, Cayley Hamilton theorem and applications.	3	1	1	1	2	3	2
CO2	Evaluate and Interpret Relation between roots and coefficient of general polynomial equation in one variable, transformation of equations, Descarte rule of sign, solution of cubic(Cardon Method), biquardratic equations.		2	1	1	2	1	2
CO3	Expalin and interpret Binary operations, algebraic structures, Definition of a group with examples and simple properties, subgroups, cyclic groups,	2	2	1	1	2	1	1
CO4	Describe Lagrange's theorem and its consequences. Homomorphism and isomorphism, Normal subgroups, Introduction to ring	3	2	2	1	1	1	1
CO5	Find and interpret Complex functions and separation into real and imaginary parts, Exponential, direct and inverse trigonometric and hyperbolic functions, logarithmic function, Gregory's series, Summation of series.	3	2	1	1	2	1	2
	3 Strong contribution, 2 Average contribution, 1 Low con	ntribu	tion					
12. Brief	lescription of self learning / E-learning component							
	nasc.ac.in/nasc/images/StudyMaterials/Physics/UGCGATEmatrix.pdf							
	/nptel.ac.in/courses/111106113/ /www.youtube.com/watch?v=WaNdQh0w6Xc							
13. Books . Topics in . Matrix &	recommended: Algebra; I.N. Hernstein, Wiley Eastern Ltd., New Delhi. Linear Algebra; K.B.Datta, Prentice Hall of India Pvt. Ltd. New Delhi. ostract Algebra; P.B.Bhattacharya, S.K. Jain & S.R Nagpaul, Cambridge Univ	rersitv	Press	India	n Editi	on.		

Higher Algebra; H.S. Hall, S.R. Knight, H.M. Publications.
 Text Book on Algebra & theory of equations; Chandrika Prasad, Pothishala Private Ltd., Allahabad.

6. Plane Trigonometry Part II: S.L.Loney, Macmillan & company, London.

1. Name of the Depart	ment: Mathematics					
2. Course Name	CALCULUS	CALCULUS			Т	Р
3. Course Code	MT122	MT122			1	0
4. Type of Course (use	e tick mark)	Core (✓)	DSE ()	AEC ()	SEC ()	OE ()
5. Pre-requisite (if any)	10+2 with PCM	6. Frequency (use tick	Even ()	Odd (✓)	Either Sem ()	Every Sem ()
7. Total Number of Le	ectures, Tutorials					
Lectures = 30		Tutorials = 10		Practical =	Nil	
8. COURSE OBJECTI for grooming them into science field.						

9. COURSE OUTCOMES (CO):

After the successful course completion, learners will develop following attributes:

COURSE OUTCOME (CO) ATTRIBUTES

CO1	Take limits of algebraic and trigonometric expressions of the form 0/0 (that simplify), non-zero number over 0, including limits that go to (positive or negative) infinity, limits that don't exist and limits that are finite.
CO2	Use and understand the limit definitions of derivative for polynomial, rational and some trigonometric functions; understand definition of continuity and consequences.
CO3	Differentiate all polynomial, rational, radical, and trigonometric functions and compositions of those functions; perform implicit differentiation and compute higher order derivatives.
CO4	Compute indefinite integrals and find anti-derivatives, including finding constants of integration given initial conditions.
C05	Apply the definite integral to compute area between two curves, volumes of solids of revolutions, arc length, surface area for surfaces of revolution and work problems.
10. Unit wise detail	ed content
Unit-1	Number of lectures = 08 Title of the unit:
of differentiability, l	e limit of a function, Continuous functions and classification of discontinuities, Differentiability, Chain rule Rolle's theorem, First and second mean value theorems, Taylor's theorems with Lagrange's and Cauchy's Successive differentiation and Leibnitz's theorem.Hamilton theorem and applications.
Unit-2	Number of lectures =08 Title of the unit:

Expansion of functions (in Taylor's and Maclaurin's series), Indeterminate forms, Partial differentiation and Euler's theorem, Jacobians.

Unit-3 Number of lectures = 08 Title of	the unit:
---	-----------

Maxima and Minima (for functions of two variables), Tangents and normals (polar form only), Curvature, Envelopes and evolutes.

Unit-4 Number of lectures = 08 Binary operations

Asymptotes, Tests for concavity and convexity, Points of inflexion, Multiple points, Tracing of curves in Cartesian and polar coordinates. Integral Calculus Reduction formulae, Beta and Gamma functions.

Unit-5 Number of lectures = 08 Title of the unit:

Qudrature, Rectification, Volumes and surfaces of solids of revolution, Pappus theorem, Double and triple integrals, Change of order of integration, Dirichlet's and Liouville's integral formulae.

11. CO-PO mapping

COs	Attributes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	
C01	Take limits of algebraic and trigonometric expressions of the form 0/0 (that simplify), non-zero number over 0, including limits that go to (positive or negative) infinity, limits that don't exist and limits that are finite.		2	2	1	3	3	3	
CO2	Use and understand the limit definitions of derivative for polynomial, rational and some trigonometric functions; understand definition of continuity and consequences.		2	2	1	2	2	2	
CO3	Differentiate all polynomial, rational, radical, and trigonometric functions and compositions of those functions; perform implicit differentiation and compute higher order derivatives.		2	3	1	3	2	3	
CO4	Compute indefinite integrals and find anti-derivatives, including finding constants of integration given initial conditions.	3	2	3	1	3	3	2	
CO5	Apply the definite integral to compute area between two curves, volumes of solids of revolutions, arc length, surface area for surfaces of revolution and work problems.		2	1	1	3	2	1	
	3 Strong contribution, 2 Average contribution, 1 Low con	ntribu	tion						
12. Brief d	2. Brief description of self learning / E-learning component								

- https://nptel.ac.in/content/storage2/courses/111101109/W3A1.pdf 1.
- http://www.cdeep.iitb.ac.in/webpage data/nptel/Core%20Science/Mathematics%20I/Course home 27.2.html 2.
- https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/111105121/lec19.pdf https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/111101109/lec35.pdf 3.
- 4.

https://www.youtube.com/watch?v=t4T0ru5LWa0

13. Books recommended:

- Gabriel Kiambauer, Mathematical Analysis, Marcel Dekkar, Inc. New York, 1.
- Murray R. Spiegel, Theory & Problem of Advanced Calculus, Schaum's outline series, Schaum's Publishing Co., New York 2.
- 3. N.Piskunov, Differential & Integral Calculus, Peace publishers, Moscow.
- P.K.Jain & S.K. Kaushik, An Introduction to Real Analysis, S.Chand & Co. New Delhi 4.
- 5. Differential Calculus by Gorakh Prasad, Seventeenth Edition, Reprint 2007,

Integral Calculus by Gorakh Prasad, Fourteenth Edition, Reprint 2007, Pothishala Private Limited, Allahabad.

1. Name of the Departm	ent: Physics						
2. Course Name	Mechanics and Wave	Motion		L	Т		
3. Course Code	PY106			3	1		
4. Type of Course (use t	ick mark)	Core (√)	Foundatio	on Course ()	Departme	ntal	
5. Pre-requisite (if any)	10+2 with Physics	6. Frequency (use tick	Even ()	Odd $()$	Either Sem	Eve rv	
7. Total Number of Lect			1				
Lecture 8. COURSE OBJECTIV		Tutorials =	-		actical = Nil		
 chemistry. By using the puhigher studies. After success 9. COURSE OUTCOME After the successful course 	sfully completion of cour S (CO):	rse, the student will ab	le explore sub				
COURSE OUTCOME		АТ	TRIBUTES				
COI	Grasped the fundame Both Galilean and Le momentum and apply	orentz and learned co them to solve problem	onservation la ms.	ws of energy	and linear and a	ngular	
C02	Students will gain an help the students in th		tation motion	and get the k	mowledge about	forces	
CO3		Students will gain an understanding of gravitational forces and learn the basics of potentials and fields, central forces, and Kepler's laws					
CO4	Students will underst oscillator using differe		racteristics of	f SHM and ob	taining solution	of the	
C05	Students will gain b properties of wave mo	pasic knowledge of otion.	wave motion	and ability t	o outline the ph	nysical	
10. Unit wise detailed con	tent						
Unit-1 Numb	er of lectures = 08	Title of the unit	: Conservatio	on Laws			
Inertial reference frame, Ne					otion, conservativ	ve and	
non -conservative forces, o dimensions, cross section.	conservation of energy,	liner momentum an	d angular m	omentum, coll	ision in one and	d two	
Unit-2 Numb	er of lectures =08	Title of the unit	: Rotational	Motion			

Rotational energy and rotational inertia for simple bodies, the combined translation and rotational and motion of a rigid body on horizontal and inclined planes, simple treatment of the motions of a top, Relations between elastic constants, bending of beams and torsion of cylinder.

Unit-3	Number of lectures = 08	Title of the unit: Gravitation
Law of gravitation	on, gravitational field and potentia	l, gravitational potential energy, gravitational field intensity, central
forces, two partic	le central force problem, reduced r	mass, relative and centre of mass motion, law of gravitation, Kepler's
laws, motions of p	planets and satellites, geo-stationary	satellites.

Unit-4 Number of lectures = 08 Title of the unit: Oscillations

Simple harmonic motion, differential equation of S. H. M. and its solution, some examples (mass- spring, simple pendulum, and compound pendulum), damped oscillator: Equation of motion and its solution, forced oscillations and resonance: solution of differential equation of a forced oscillator and variation of amplitude with frequency and damping.

Unit-5 Number of lectures = 08 Title of the unit: Wave Motion

Classification of waves, expression for a plane progressive and transverse harmonic wave, particle velocity and acceleration, path difference and phase difference, velocity of transverse waves in a string, differential equation of wave motion, plane progressive waves in fluid media, reflection of waves, phase change on reflection, superposition, stationary waves, pressure and energy distribution, phase and group velocity.

11. CO-	PO mapping							
COs	Attributes	PO1	PO2	PO3	PO4	PO5	PO6	PO
C01	Grasped the fundamentals of different types of frames of references and transformation laws Both Galilean and Lorentz and learned conservation laws of energy and linear and angular momentum and apply them to solve problems.	3	1	1		2	1	1
CO2	Students will gain an understanding of rotation motion and get the knowledge about forces help the students in their daily life.	3	1	2		3	1	1
CO3	Students will gain an understanding of gravitational forces and learn the basics of potentials and fields, central forces, and Kepler's laws	3	1	2		3	1	1
CO4	Students will understand the physical characteristics of SHM and obtaining solution of the oscillator using differential equations	3	1			2	1	
C05	Students will gain basic knowledge of wave motion and ability to outline the physical properties of wave motion.	3	1			2	1	
	3: Strong contribution, 2: Average contribution	on , 1: L	Jow con	tributio	n	•	•	
12. Bri	ef description of self learning / E-learning component							

13. Books recommended:

1. E. M. Purcell, Ed: "Berkeley Physics Course, Vol. 1, Mechanics" (McGraw-Hill).

- 2. R. P. Feynman, R. B. Lighton and M Sands; The Feynman Lectures in Physics, Vol. 1 (BI Publications, Bombay, Delhi, Calcutta, Madras).
- 3. J. C. Upadhyay: 'Mechanics (Himalaya Publishing House)
- 4. D.S. Mathur "Mechanics" (S. Chand).
- 5. P. K. Srivastava: "Mechanics" (New Age International).

Second Semester

1. Name	of the Dens	artmen	t: Mathematics									
	e Name		VECTOR ANALYSIS	AND GEOMET	RY	L		Т			Р	
3. Cours			MT123			3		1			0	
4. Type of	of Course (use tick	mark)	Core (✓)	DE ()	FC ()				OF	0	
5. Pre-re (if an	quisite		,	6. Frequency (use tick	Even (✓)	Odd ()				Eve	ery Se	m ()
		Lectur	es, Tutorials	, , , , , , , , , , , , , , , , , , ,								
Lectures =				Tutorials = 10		Practical	= Nil					
and geome	try. By usir	ng the p	The purpose of this urincipal of applied main pletion of course, the	thematics to obtain	quantitativ	e relations	which	n are v	ery im	portar	t for	
9. COURSE After the su			O): npletion, learners will	develop following	attributes:							
			ATTRIBUTES	13 8								
	CO1		Find and interpret Sca Vectors, Vector Differ									procal
	CO2		Evaluate and Interpre theorem, Stokes theore				Evalua	te inte	grals l	by usi	ng G	reen's
	CO3		Describe the General e of a conic.	equation of second	degree, Syst	tem of con	ics, Co	onfocal	l conic	s, Pola	ır equ	ation
	CO4		Find and Interpret the	various forms of th	e equations	of a line, I	Plane,	Sphere	, Cone	and C	Cylind	ler.
	CO5		Find the Central Coni equations.	coids, Paraboliods,	Plane sect	tions of co	onicoid	ls, redi	uction	of sec	ond c	legree
10. Unit w Unit-1	ise detailed		nt r of lectures = 08	Title of the uni	t:							
Scalar & vec Curl.	ctor product	of three	e vectors. Product of fo	our vectors. Recipro	ocal Vectors	s. Vector D	Differen	ntiation	1. Grac	lient, l	Diverg	gence,
Unit-2			r of lectures =08	Title of the unit								
Vector integ	ration. Line	integra	l, Surface integral, Vol	lume integral, Gaus	s divergenc	e theorem,	, Stoke	s theo	rem, G	reens	theore	em.
Unit-3]	Numbe	r of lectures = 08	Title of the unit	t :							
General equ	ation of sec	ond deg	ree. System of conics.	Confocal conics. P	olar equatio	on of a coni	ic.					
Unit-4]	Numbe	r of lectures = 08	Title of the unit	t:							
-			rious forms of the equone ,Cylinder	uations of a line P	lane: Introd	uction, par	rticula	r plane	es, var	ious f	orms	of the
Unit-5			er of lectures = 08	Title of the unit								
Central Con	icoids, Para	boliods,	, Plane sections of coni	coids, reduction of	second deg	ree equation	ons					
11. СО-РО	mapping											
COs			Attribu				PO2	PO3	PO4	PO5	PO6	PO7
CO1	Find and interpret Scalar & vector product of three vectors, Product o vectors, Reciprocal Vectors, Vector Differentiation, gradient, diver and curl for a function at a given point.					1	1	1	2	1	2	
CO2	Evaluate a	nd Inter	rpret line, surface and theorem, Stokes theore				2	1	1	2	1	2

CO3	Describe the General equation of second degree, System of conics, Confocal conics and Polar equation of a conic.	2	2	1	1	2	1	1
CO4	Find and Interpret the various forms of the equations of a line, Plane, Sphere, Cone and Cylinder.	3	2	2	1	1	1	1
CO5	Find the Central Conicoids, Paraboliods, Plane sections of conicoids, reduction of second degree equations	3	2	1	1	2	1	2
	3 Strong contribution, 2 Average contribution, 1 Low contribution							
12. Brief d	escription of self learning / E-learning component							
	/www.youtube.com/watch?v=SZCsFS9izfQ							
	/www.digimat.in/nptel/courses/video/111105122/L37.html							
3. <u>http://v</u>	www.bhojvirtualuniversity.com/slm/bsc1_maths3.pdf							
13. Books	recommended:							
1. Murray R.	Spiegel, Vector Analysis, Schaum Publishing Company, New York.							
2. Shanti Nat	rayan, A Text Book of Vector Calculus, S. Chand & Co., New Delhi.							
	asad & H.C.Gupta, Text Book on Coordinate Geometry, Pothishala Private L							
	4. R.J.T.Bill, Elementary Treatise on coordinate Geometry of three Dimensions, Macmillan India Ltd.							
5. P.K.Jain &	. P.K.Jain & Khalil Ahmad, A Text Book of two dimensions, Wiley Eastern Ltd.							

6. N.Saran & R.S.Gupta, Analytical Geometry of three dimensions, Pothishala Private Ltd., Allahabad.

2.	Course Name	Differential Equations			L	Т	Р
3.	Course Code	MT124			3	1	0
4.	Type of Course (use tick mark)	Core (□)	DSE ()	AEC ()	SEC ()	OE ()
5.	Pre-requisite (if any)	10+2 with PCM	6. Frequency (use tick marks)	Even ()			

 Lectures = 30
 Tutorials = 10
 Practical = Nil

 8. COURSE OBJECTIVES: The purpose of this undergraduate course is to impart basic and key knowledge of ordinary and partial differential equations and their solutions. Students will be able to apply different methods to solve the different categories of equations. After successful completion of course, the student will be able to explore subject into their respective dimensions.

9. COURSE OUTCOMES (CO):

After the successful course completion, learners will develop following attributes:

COURSE OUTCOME	ATTRIBUTES					
CO1	Students will gain an understanding and formations of ordinary differential equations .They will able to solve equations of first order and first degree homogeneous, linear and exact equations, alo with higher order linear differential equations with constant coefficients & homogeneous line differential equations.					
CO2	Students will be able to understand and solve differential equations of the first order but not of the first degree, Clairaut's equations, simultaneous linear differential equations and linear differential equations of the second order (including the method of variation of parameters).					
CO3	Students will gain an understanding of formations of partial differential equations and will be able to solve them by direct Integration, Lagrange's method for first order linear partial differential equations and first order non linear partial differential equations including Charpit's method.					

CO4			e own understanding to classify of e solutions of linear partial differ										
	CO5		understanding of power series an gular points by Frobenius method.	d serie	es solu	ition o	f diffe	rential	equatio	ons for			
10. U	J nit wise de	tailed content											
Unit	-1	Number of lectures = 08	Title of the unit:										
Separa	ation of vari		ee, order and solution of a D.E. Equogeneous equations, linear equation us linear differential equations.							al			
Unit	-2	Number of lectures =08	Title of the unit:										
			the first degree, Clairaut's equation as of the second order (including th							linear			
Unit	-3	Number of lectures = 08	Title of the unit:										
Integr		order Linear Partial Different	brming Partial Differential Equation tial Equations, Lagrange's Metho							erential			
Unit-4 Number of lectures = 08		Number of lectures = 08	Title of the unit:										
			ns of second order, linear partial di ous partial differential equations.	fferent	tial eq	uations	s with o	constan	t coeff	icients			
Unit	-5	Number of lectures = 08	Title of the unit:										
Power	Series, Sol	ution of Differential Equations,	Ordinary Point, Singular point, Fro	obenius	s Metł	nod.							
11. C	O-PO mapp	oing											
COs		Attribute	es	PO1	PO2	PO3	PO4	PO5	PO6	PO7			
C01	equations . homogeneo differential	dents will gain an understanding and formations of ordinary differential ations .They will be able to solve equations of first order and first degree nogeneous, linear and exact equations, along with higher order linear erential equations with constant coefficients & homogeneous linear erential equations.			2	2	1	1	1	2			
CO2	first order linear diffe	tudents will be able to understand and solve differential equations of the irst order but not of the first degree, Clairaut's equations, simultaneous inear differential equations and linear differential equations of the second order (including the method of variation of parameters).			2	2	1	1	1	2			
CO3	equations a method for	tudents will gain an understanding of formations of partial differential quations and will be able to solve them by direct Integration, Lagrange's nethod for first order linear partial differential equations and first order non inear partial differential equations including Charpit's method.			2	2	1	1	1	2			
	differential	lents will create the own understanding to classify of linear partia erential equations of second order and to obtain the solutions of linea ial differential equations with constant coefficients of second order.			2	2	1	1	1	2			
CO4	partial diffe	erential equations with constant	coefficients of second order.										

3 Strong contribution, 2 Average contribution, 1 Low contribution

12. Brief description of self learning / E-learning component

- 1. https://nptel.ac.in/courses/111107111/
- 2. https://www.digimat.in/nptel/courses/video/111105093/L01.html
- 3. https://www.library.gscgandhinagar.in/assets/admin/images/MAT-102(UNIT1,2).pdf

13. Books recommended:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons Inc., New York.
- 2. D.A. Murray, Introductory Course on Differential Equations, Orient Longman, (India).
- 3. A.R.Forsyth, A Treatise on Differential Equations, Macmillan & Co. Ltd., London.
- 4. Ian N. Sneddon, Elements of Partial Differential Equations, McGraw-Hill Book Company.
- 5. D.G Zill, A First Course In Differential Equations with Modelling Applications, Cengage Learning
- 6. G.F Simmons Differential Equations with Applications and Historical Notes McGraw Hill Education; 2 edition

M.D Raisinghania, Ordinary and Partial Differential Equations, S. Chand Publishing, Twentieth edition.

1. Name of the Dep	artment: Physics									
2. Course Name		Physical Optics and Lasers			Т					
3. Course Code	PY108		3							
4. Type of Course (use tick mark)	Core $()$	Foundatio	n Course ()	Departmer	Departmental				
5. Pre-requisite	10+2 with Physics	6. Frequency	Even $()$	Odd ()	Either Sem	Ev				
(if any)		(use tick		Ň	0	ery				
	Lectures, Tutorials, Practica		•							
Leo	etures = 30	Tutorials = 10 Practical = N								
8. COURSE OBJE	CTIVES: This course provide	es students with a	working know	vledge of opt	ical physics, incl	uding				
diffraction, polarizatio			C	0 1	1 2	U				
9. COURSE OUTCO										
	course completion, learners w	ill develop following	attributes:							
COURSE OUTCOM			FRIBUTES							
CO1	The student will be in	The student will be introduced to the design of optical systems and aberrations, with an								
	emphasis on image forn	emphasis on image forming systems.								
CO2	The wave optics part o	f the course will giv	e the student a	thorough fur	damental knowle	edge				
	within interferometry and	nd coherence. They w	will be able to	determine the	wavelengths of I	light				
	sources using concepts	of interference.			-	-				
CO3	Students will be able to	determine the wavel	angth of light	using the phor	among of diffrac	tion				
03		Students will be able to determine the wavelength of light using the phenomena of diffraction and Resolving power of various optical instruments.								
	• •	-								
CO4		Students will learn to analyse the polarization in optical systems and will be able to represent								
	polarized light using Joi	nes formalism.								
CO5	The students will be int	The students will be introduced to lasers. They will be able to explain various applications and								
	working of different typ	working of different types of lasers.								
10. Unit wise detailed	content									
	umber of lectures = 08	Title of the uni	t. Coomotricol	Onting and	Nature of Light					
<u>Unit-1</u> N Fermet's principle and	its application to obtain law	Title of the uni	refraction	linal points of	f an optical syst	om				
chromatic and spheric	al aberrations, coma, astigma	atism Idea of wave	electromagne	tic and quan	tum theory of li	aht				
	es of wave front, Huygens' Prin		, electromagne	tie and quan	tuin theory of h	gin,				
	umber of lectures =08	Title of the uni	t. Interforence	o of light						
	position, two-slit interference,				h retardations lat	eral				
	ms, applications for precision									
	interferometer, its application									
	- Perrot interferometer and etal				a stongen annolo	,				
		1								
Unit-3 N	umber of lectures = 08	Title of the unit	: Diffraction							

Fresnel half-period zones, plates, straight edge, rectilinear propagation, Fraunhoffer diffraction: diffraction at a slit, halfperiod zones, the intensity distribution, diffraction at a circular aperture and a circular disc, resolution of images, Rayleigh criterion, resolving power of telescope and microscopic systems, reflection grating, Resolving power of a grating and comparison with resolving powers of prism.

Unit-4 Number of lectures = 08 Title of the unit: Polarization

Double refraction in uniaxial crystals, Nicol prism, polaroids and retardation plates, Babinet's compensator, Analysis of polarized light, Optical activity and Fresnel's explanation, Half shade and Biquartz polarimeters, Matrix representation of plane polarized waves, matrices for polarizers, retardation plates and rotators.

Unit-5 Number of lectures = 08 Title of the unit: Lasers

Purity of a special line, coherence length and coherence time, spatial coherence of a source, Einstein's A and B coefficients, spontaneous and induced emissions, conditions for laser action, population inversion, 3 and 4 Level Systems (Ruby, Nd:YAG, CO₂, liquid dye and He-Ne laser), Properties and applications of laser.

11. CO-PO mapping

Attributes	PO1	PO2	PO3	PO 4	PO5	P O	PO 7
The student will be introduced to the design of optical systems and aberrations, with an emphasis on image forming systems.	3	1			2		1
The wave optics part of the course will give the student a thorough fundamental knowledge within interferometry and coherence. They will be able to determine the wavelengths of light sources using concepts of interference.	3	2			2		1
Students will be able to determine the wavelength of light using the phenomena of diffraction and Resolving power of various optical instruments.	3	1			2	1	3
Students will learn to analyse the polarization in optical systems and will be able to represent polarized light using Jones formalism.	3	1			2		1
The students will be introduced to lasers. They will be able to explain various applications and working of different types of lasers.	3	1			2	1	3
	The student will be introduced to the design of optical systems and aberrations, with an emphasis on image forming systems. The wave optics part of the course will give the student a thorough fundamental knowledge within interferometry and coherence. They will be able to determine the wavelengths of light sources using concepts of interference. Students will be able to determine the wavelength of light using the phenomena of diffraction and Resolving power of various optical instruments. Students will learn to analyse the polarization in optical systems and will be able to represent polarized light using Jones formalism. The students will be introduced to lasers. They will be able to explain various applications and working of different types of	The student will be introduced to the design of optical systems and aberrations, with an emphasis on image forming systems.3The wave optics part of the course will give the student a thorough fundamental knowledge within interferometry and coherence. They will be able to determine the wavelengths of light sources using concepts of interference.3Students will be able to determine the wavelength of light using the phenomena of diffraction and Resolving power of various optical instruments.3Students will learn to analyse the polarization in optical systems and will be able to represent polarized light using Jones formalism.3The students will be introduced to lasers. They will be able to explain various applications and working of different types of3	The student will be introduced to the design of optical systems31The student will be introduced to the design of optical systems.31The wave optics part of the course will give the student a thorough fundamental knowledge within interferometry and coherence. They will be able to determine the wavelengths of light sources using concepts of interference.32Students will be able to determine the wavelength of light using the phenomena of diffraction and Resolving power of various optical instruments.31Students will learn to analyse the polarization in optical systems and will be able to represent polarized light using Jones formalism.31The students will be introduced to lasers. They will be able to explain various applications and working of different types of31	The student will be introduced to the design of optical systems and aberrations, with an emphasis on image forming systems.31The wave optics part of the course will give the student a thorough fundamental knowledge within interferometry and coherence. They will be able to determine the wavelengths of light sources using concepts of interference.32Students will be able to determine the wavelength of light using the phenomena of diffraction and Resolving power of various optical instruments.31Students will learn to analyse the polarization in optical systems and will be able to represent polarized light using Jones formalism.31The students will be introduced to lasers. They will be able to explain various applications and working of different types of31	Image: Additional systems and aberrations, with an emphasis on image forming systems.31The student will be introduced to the design of optical systems and aberrations, with an emphasis on image forming systems.32The wave optics part of the course will give the student a thorough fundamental knowledge within interferometry and coherence. They will be able to determine the wavelengths of light sources using concepts of interference.32Students will be able to determine the wavelength of light using the phenomena of diffraction and Resolving power of various optical instruments.31Students will learn to analyse the polarization in optical systems and will be able to represent polarized light using Jones formalism.31The students will be introduced to lasers. They will be able to explain various applications and working of different types of31	The student will be introduced to the design of optical systems and aberrations, with an emphasis on image forming systems.312The wave optics part of the course will give the student a thorough fundamental knowledge within interferometry and coherence. They will be able to determine the wavelengths of light sources using concepts of interference.322Students will be able to determine the wavelength of light using the phenomena of diffraction and Resolving power of various optical instruments.312Students will learn to analyse the polarized light using Jones formalism.312The students will be introduced to lasers. They will be able to explain various applications and working of different types of312	The student will be introduced to the design of optical systems and aberrations, with an emphasis on image forming systems.312The wave optics part of the course will give the student a thorough fundamental knowledge within interferometry and coherence. They will be able to determine the wavelengths of light sources using concepts of interference.322Students will be able to determine the wavelength of using the phenomena of diffraction and Resolving power of various optical instruments.3121Students will learn to analyse the polarization in optical systems and will be able to represent polarized light using Jones formalism.3122The students will be introduced to lasers. They will be able to explain various applications and working of different types of3121

12. Brief description of self learning / E-learning component

1. http://textofvideo.nptel.ac.in/104105033/lec39.pdf.

- 2. http://nptel.ac.in/courses/104101006/downloads/lecture-notes/mod10/lec3.pdf
- 3. https://www.youtube.com/watch?v=1jRo5fTg0KY

13. Books recommended:

- 1. A. K. Ghatak, "Physical Optics" (Tata McGrew Hill).
- 2. D. P. Khandelwal; "Optics and Atomic Physics" (Himalaya, Publishing House, Bombay, 1988).
- 3. F. Smith and J.H Thomson; "Manchester Physics sries; Optics" (English Language Book Society and John Wiley, 1977).
- 4. Born and Wolf; "Optics" (University of Rochester, New York)
- 5. K. D. Moltey; "Optics" (Oxford University Press).
- 6. Jenkins and White; "Fundamental of Optics" (McGraw-Hill).
- 7. Smith and Thomson; "Optics" (John Wiley and Sons).
- 8. B.B. Laud; "Lasers" (New Age).